ACLS Study Guide

This purpose of this study guide is to assist you in successfully completing the AHA ACLS course. It includes sections on:

- ECG Rhythm Interpretation
- > ACLS Drugs
- > ACLS Algorithms

ECG Rhythm Interpretation

Electrical Conduction System

- \Rightarrow **SA Node**. Primary pacemaker. Rate 60-100
- \Rightarrow The impulse travels through the **Intraatrial Pathways** to innervate the atria
- ⇒ The impulse reaches the **AV Node** where electrical activity is delayed to allow for more complete filling of ventricles.
- \Rightarrow **AV Junction** is comprised of the AV Node and the Bundle of His. Secondary pacemaker. Rate 40-60
- \Rightarrow The impulse then travels into the **Right and Left Bundle branches.** Conducts electrical activity from Bundle of His to Purkinje Network.
- \Rightarrow The **Purkinje Network** are fibers that spread throughout the ventricles, that carry impulses directly to ventricular muscle cells. Our last pacemaker site. Rate 20-40

P wave:	Represents Atrial depolarization
PRI:	• Represents the time it takes the impulse to travel from the SA Node through the
	intraatrial pathways in atria to the AV junction and the delay at the AV node.
	• Interval from start of P wave to start of QRS, measures 0.12-0.20 sec
QRS:	• Represents conduction of impulse from Bundle of His through the ventricular
	muscle. Represents ventricular depolarization.
	• Should measure less than 0.12 sec
T wave:	 Follows ST segment. Slightly rounded, positive deflection
	• Represents ventricular repolarization, "resting phase "of cardiac cycle

Absolute Refractory Period:

No outside stimulus can cause cells to depolarizationFrom beginning of the QRS complex to the middle of the T wave

Relative Refractory Period:

•A dangerous period. A strong outside stimulus can initiate depolarization of the only partially recharged cells. Possibly causing a lethal arrhythmia

•From the middle of the T wave to its end

Relative Refractory Period

5 Steps for Analyzing a Strip:

Heart Rate: Bradycardia <60, Normal 60-100, Tachycardia >100

- \Rightarrow Count the # of R waves in a 6 second rhythm strip, then multiply by 10
- ⇒ Find an R wave that lands on a bold line. Count the # of large boxes to the next R wave. If the second R wave is 1 large box away the rate is 300, 2 boxes 150, 3 boxes 100, 4 boxes 75, 5 boxes 60

 \Rightarrow Divide 300 by the number of large boxes separating the R waves

Heart Rhythm:

 \Rightarrow Look at the R – R distances, are they regular or irregular

P Wave:

- \Rightarrow Are there P waves?
- \Rightarrow Do the P waves all look alike?
- \Rightarrow Do the P waves occur at a regular rate?
- \Rightarrow Is there one P wave before each QRS

PR Interval:

- \Rightarrow Is the PRI between 0.12-0.20?
- \Rightarrow Is it consistent across the strip?
- \Rightarrow If it varies is there a pattern?

QRS Complex:

- \Rightarrow Do all of the QRS Complexes look alike?
- \Rightarrow Are they regular?
- \Rightarrow Is the duration 0.04 0.12

Normal Sinus Rhythm

This rhythm represents the normal state with the SA node functioning as the lead pacer with normal conduction through the heart. The intervals should all be consistent and within normal ranges.

- Rhythm Regular
- Rate (60-100 bpm)
- QRS Duration Normal
- P Wave Visible before each QRS complex
- P-R Interval Normal (<5 small squares. Anything above and this would be 1st degree block)
- Indicates that the electrical signal is generated by the sinus node and travelling in a normal fashion in the heart.

Sinus Bradycardia

The sinus beats are slower than 60 BPM. The origin may be in the SA node or in an atrial pacemaker. This rhythm can be caused by vagal stimulation leading to nodal slowing, or by medicines such as beta blockers, and is normally found in some well-conditioned athletes. The QRS complex, and the PR interval may slightly widen as the rhythm slows below 60 BPM. However, they will not widen past the upper threshold of the normal range for that interval. For example, the PR interval may widen, but is should not widen over the upper of 0.20 seconds

- Rhythm Regular
- Rate less than 60 beats per minute
- QRS Duration Normal
- P Wave Visible before each QRS complex
- P-R Interval Normal
- Usually benign and often caused by patients on beta blockers

Sinus Tachycardia

It is an excessive heart rate above 100 beats per minute (BPM) which originates from the SA node. Causes include stress, fright, pain, dehydration, and exercise. Not usually a surprise if it is triggered in response to regulatory changes (e.g. shock).

- Rhythm Regular
- Rate Usually between 100 150 beats per minute
- QRS Duration Normal
- P Wave Visible before each QRS complex
- P-R Interval Normal
- The impulse generating the heart beats are normal, but they are occurring at a faster pace than normal. Seen during exercise

Atrial Flutter

A single irritable focus in the atria fires in a rapid repetitive fashion at a rate of 150 – 350 beats/min. The F waves appear in a saw toothed pattern such as those in this ECG. The QRS rate is usually regular and the complexes appear at some multiple of the P-P interval.

- Rhythm Usually regular
- Rate Usually fast 110-150 beats per minute
- QRS Duration Usually normal
- P Wave Replaced with multiple F (flutter) waves, usually at a ratio of 2:1 (2F - 1QRS) but sometimes 3:1
- P Wave rate 300 beats per minute
- P-R Interval Not measurable

Atrial Fibrillation

Atrial fibrillation is the chaotic firing of numerous atrial pacemaker cells in a totally haphazard fashion. The result is that there are no discernible P waves. And the QRS complexes are innervated haphazardly in an irregularly irregular pattern. The ventricular rate is guided by occasional activation from one of the pacemaking sources. Because the ventricles are not paced by anyone site, the intervals are completely random.

- Rhythm Irregularly irregular
- Rate usually 100-160 beats per minute but slower if on medication
- QRS Duration Usually normal
- P Wave Not distinguishable as the atria are firing off all over
- P-R Interval Not measurable
- The atria fire electrical impulses in an irregular fashion causing irregular heart rhythm

Supraventricular Tachycardia (Narrow complex Tachycardia) (SVT)

SVT is a narrow complex tachycardia originating above the ventricles. SVT can occur in all age groups.

- Rhythm Regular
- Rate > 150 beats per minute
- QRS Duration Usually normal
- P Wave Often buried in preceding T wave
- P-R Interval Depends on site of supraventricular pacemaker

1st Degree AV Block

1st Degree AV block is caused by a conduction delay through the AV node but all electrical signals reach the ventricles. This rarely causes any problems by itself and often trained athletes can be seen to have it. The normal P-R interval is between 0.12s to 0.20s in length, or 3-5 small squares on the ECG.

- Rhythm Regular
- Rate Normal
- QRS Duration Normal
- P Wave Ratio 1:1
- P Wave rate Normal
- P-R Interval Prolonged (>5 small squares)

2nd Degree Block Type 1 (Wenckebach)

Mobitz Type I is also know as Wenckebach (pronounced WEEN-keybock). It is caused by a diseased AV node with a long refractory period. The result is that the PR interval lengthens between successive beats due to increasing delayed conduction through the AV junction until a beat is dropped. At that point, the cycle starts again.

- Rhythm Regularly irregular
- Rate Normal or Slow
- QRS Duration Normal
- P Wave Ratio 1:1 for 2,3 or 4 cycles then 1:0.
- P Wave rate Normal but faster than QRS rate
- P-R Interval Progressive lengthening of P-R interval until a QRS complex is dropped

2nd Degree Block Type 2

In 2nd degree Type 2, the impulse either passes through the AV junction normally or it is blocked completely. It is an all or nothing type of thing. Beats are intermittently nonconducted and QRS complexes dropped, usually in a repeating cycle of every 3rd (3:1 block) or 4th (4:1 block) P wave

- Rhythm Regular
- Rate Normal or Slow
- QRS Duration Prolonged
- P Wave Ratio 2:1, 3:1
- P Wave rate Normal but faster than QRS rate
- P-R Interval Normal or prolonged but constant

3rd Degree Block

3rd degree block or complete heart block occurs when the impulse travels through the atria normally but is blocked completely at the junction. The atria and ventricles are firing separately – each to its own drummer, so to speak. The atrial rhythm can be bradycardic, normal or tachycardic. The escape beat can be junctional (normal QRS) or ventricular (wide QRS).

- Rhythm Regular
- Rate Slow
- QRS Duration Usually wide, but if ventricular impulse is generated low in the junction it could be normal.
- P Wave Unrelated
- P Wave rate Normal but faster than QRS rate
- P-R Interval Variation

Differentiation of Second- and Third-Degree AV Blocks

Wide Complex Tachycardia (usually monomorphic ventricular tachycardia) Abnormal

Ventricular tachycardia is simply the presence of three or more ectopic ventricular complexes in a row with a rate above 100. Originates from one irritable focus so the rhythm is regular. Poor cardiac output is usually associated with this rhythm

- Rhythm Regular
- Rate Fast usually 180-190 Beats per minute
- QRS Duration Prolonged
- P Wave Not seen
- Results from abnormal tissues in the ventricles generating a rapid and irregular heart rhythm.

Polymorphic V-Tach (Torsades de Pointes)

- Similar to ventricular tachycardia
- Morphology of QRS complexes shows variations in width and shape
- Resembles a turning about or twisting motion along base line
- May result from hypokalemia, hypomagnesemia, tricyclic antidepressant drug overdose, the use of antidysrhythmic drugs, or combination of these
- Seen in alcoholics, eating disorders and the debilitated patients

Ventricular Fibrillation (VF)

Disorganized electrical signals cause the ventricles to quiver instead of contract in a rhythmic fashion. A patient will be unconscious as there is no cardiac output and blood is not pumped to the brain. Immediate treatment by defibrillation is indicated. This condition may occur during or after a myocardial infarct.

- Rhythm Irregular
- Rate 300+, disorganized
- QRS Duration Not recognizable
- P Wave Not seen
- This patient needs to be defibrillated!! QUICKLY

Pulseless Electrical Activity (PEA)

PEA occurs when any heart rhythm (other than V-Tach or V- Fib) is observed on the monitor and does not produce a pulse. PEA can be any rhythm (sinus, bradycardia, tachycardia). There is organized electrical activity without a pulse.

- Prognosis for PEA invariably is poor unless an underlying cause can be identified and corrected
- The highest priority of care is to maintain circulation for the patient with basic and advanced life support techniques while searching for a correctable cause

Asystole – Abnormal

Asystole refers to the absence of any electrical cardiac activity. It is defined by < 10 non-perfusing complexes per minute

- Rhythm Flat or an occasional p wave or QRS complex. The QRS complexes when they occur are wide and bizarre
- Rate 0 Beats per minute
- QRS Duration None
- P Wave None

ACLS Drugs

Drug	Action	Indication	Precautions/	Dosage
			Contraindications	
Adenosine	Slows conduction through	Stable narrow complex	Transient side effects	Initial bolus of 6mg
	the AV node.	SVT unresponsive to	include flushing, chest	given rapidly over 1 to 3
	Can interrupt reentry	vagal maneuvers.	pain or tightness, brief	seconds followed
	pathways in the AV node.	May consider for	periods of asystole or	immediately by a 20ml
	Negative	unstable narrow-	bradycardia, ventricular	saline flush
	chronotropic/dromatropic.	complex reentry	ectopy.	A second dose of 12 mg
	Very short half live,	tachycardia while	Less effective in patients	can be given in 1 to 2
		preparations are made	taking theophylline or	minutes if needed
		for cardioversion.	caffeine.	
		Regular and	May cause	*Reduce initial dose to
		monomorphic wide-	bronchospasm, caution	3mg in patients
		complex tach thought to	with asthma patients.	receiving dipyridamole
		be or previously defined	Contraindicated in	(persantine) or
		to be reentry SVT.	poison/drug-induced	carbamzepine
			tachycardia or second or	(Tegretol), in heart
			third degree heart block.	transplant patients or if
			Will not terminate atrial	given by central venous
			fib, atrial flutter or VT.	access.
Amiodarone	Antidysrhythmic	Stable VT (preferably	Rapid infusion may lead	VT with a pulse: 150mg
	Prolongs duration of	after expert consult).	to hypotension.	IV in 50 ml piggyback
	action potential and	Recurrent, unstable VT.	Do not administer with	over 10 minutes.
	effective refractory	VF/pulseless VT	other drugs that prolong	VF/Pulseless VT:
	period.	unresponsive to shock	QT interval.	300mg IV push, second
	Increases PR and QT	delivery, CPR and	*Caution multiple	dose if needed 150mg
	intervals.	vasopressors.	complex drug	IV push.
	Decreases sinus rate.		interactions	

Atropine	Anticholinergic – (para- sympathetic blocker) Increase heart rate and AV conduction. Dries secretions. Dilates bronchioles. Decreased GI motility.	First line drug for acute symptomatic bradycardia	Use atropine cautiously in the presence of acute coronary ischemia or MI. Do not rely on Atropine in Mobitz type II second or third degree AV block. Should not delay implementation of external pacing for patients with poor perfusion.	0.5mg IV every 3 to 5 minutes as needed, not to exceed total dose of 0.04mg/kg (total 3mg)
Diltiazem	Inhibits calcium ion influx across cell membrane during cardiac depolarization; produces relazation of coronary vascular smooth muscles, dilates coronary arteries, slows SA/AV node conduction times, dilates peripheral arteries	To control ventricular rate in atrial fibrillation and atrial flutter. Use after adenosine to treat refractory reentry SVT in patients with narrow QRS complex and adequate blood pressure	Do not use for wide- QRS tachycardias of uncertain origin or for poison/drug-induced tachycardias. Avoid use in patients with WPW. Blood pressure may drop.	15-20mg (0.25mg/kg) IV over 2 minutes. May give another IV dose in 15 minutes at 20 to 25 mg (0.35mg/kg) over 2 minutes
Dopamine	Causes increased cardiac output: acts on beta 1 and alpha receptors, causing vasoconstriction in blood vessels	Second-line drug for symptomatic bradycardia (after atropine). Use for hypotension with signs and symptoms of shock.	Correct hypovolemia with volume replacement first. May cause tachyarrhythmias and excessive vasoconstriction.	Usual infusion rate is 2 to 20mcg/kg/min Titrate to patient response

Epinephrine	Used during resuscitation primarily for is alpha adrenergic effects (vasoconstriction) increasing coronary and cerebral blood flow	Cardiac arrest: VF, pulseless VT, asystole, PEA. Symptomatic bradycardia after atropine as an alternative to dopamine. Severe hypotension when pacing and atropine fail. Anaphylaxis.	Raising BP and increasing HR may cause myocardial ischemia, angina and increased myocardial oxygen demand. High doses do not improve survival	Cardiac Arrest: 1mg (1:10,000) IV administered every 3 to 5 minutes during resuscitation. Follow each dose with 20 ml NS flush Profound bradycardia or hypotension: 2 to 10 mcg per minute infusion titrated to patient response
Magnesium	Reduces SA node impulse formation. Prolongs conduction time in myocardium	Recommended for use in cardiac arrest only if torsades de pointes or suspected hypomagnesemia is present. Life-threatening ventricular arrhythmias due to digitalis toxicity	Occasional fall in blood pressure with rapid administration. Use with caution if renal failure is present	Cardiac arrest (due to hypomagnesemia or Torsades de Pointes) 1 to 2 g diluted in at least 10ml of NS or D5W over 5 minutes Trosades de Pointes with a Pulse of AMI with hypomagnesemia: Loading dose of 1 to 2 Grams mixed in 50 to 100 ml NS or D5W over 5 to 60 minutes, follow with 0.5 to 1 gram per hour IV (titrate to control Torsades)

Sodium Bicarb	Alkalinizing agent –	Known preexisting	Adequate ventilation	1 mEq/kg IV bolus
	buffers acidosis	hyperkalemia.	and CPR, not bicarb, are	
		Known preexisting	the major "buffer	Once ROSC, if rapidly
		bicarb responsive	agents" in cardiac arrest.	available, use arterial
		acidosis (DKA,	Not recommended for	blood gas analysis to
		overdose of tricyclic	routine use in cardiac	guide bicarb therapy
		antidepressant, ASA,	arrest patients.	
		cocaine or	-	During cardiac arrest,
		diphenhydramine).		ABG results are not
		Prolonged resuscitation		reliable indicators of
		with effective		acidosis.
		ventilation; on return of		
		spontaneous circulation		
		after long arrest interval		
Vasopressin	Nonadrenergic peripheral	May be used as	Potent peripheral	Cardiac arrest:
	vasoconstrictor,	alternative pressor to 1 st	vasoconstrictor.	One dose of 40 units
	increasing blood flow to	or 2 nd dose of		may replace first or
	heart and brain.	epinephrine in		second dose of epi
	Vasopressor effects not	VF/pulseless VT,		
	blunted by severe acidosis	asystole or PEA cardiac		
		arrest.		
Verapamil	Slows depolarization of	Alternative drug after	Do not use for wide	5 mg IV over 2 min
	slow-channel electrical	Adenosine in SVT	QRS tach of unknown	(over 3 min in older
	cells	To control ventricular	origin, WPW, sick sinus	adults)
	Slows conduction through	rate in atrial fibrillation	syndrome or 2 nd or 3 rd	May repeat 5 mg every
	AV node	and atrial flutter.	degree heart block	15 min as needed to
				total dose of 30mg

Figure 4

- Push hard (≥2 inches [5 cm]) and fast (≥100/min) and allow complete
- Minimize interruptions in compressions
- Avoid excessive ventilation
- · Rotate compressor every 2 minutes
- If no advanced airway, 30:2 compression-ventilation ratio
- · Quantitative waveform capnography
- If PETCO₂ <10 mm Hg, attempt to improve CPR quality
- Intra-arterial pressure
- If relaxation phase (diastolic) pressure <20 mm Hg, attempt to improve CPR quality

Return of Spontaneous Circulation (ROSC)

- · Pulse and blood pressure
- Abrupt sustained increase in PETCO₂ (typically ≥40 mm Hg)
- · Spontaneous arterial pressure waves with intra-arterial monitoring

- · Biphasic: Manufacturer recommendation (120-200 J); if unknown, use maximum available. Second and subsequent doses should be equivalent, and higher doses may be considered.
- Monophasic: 360 J
- Epinephrine IV/IO Dose: 1 mg every 3-5 minutes
- · Vasopressin IV/IO Dose: 40 units can replace first or second dose of epinephrine
- Amiodarone IV/IO Dose: First dose: 300 mg bolus. Second dose: 150 mg.

Advanced Airway

- · Supraglottic advanced airway or endotracheal intubation
- Waveform capnography to confirm and monitor ET tube placement
- · 8-10 breaths per minute with continuous chest compressions

Reversible Causes

- Tension pneumothorax - Tamponade, cardiac
- Toxins
- Thrombosis, pulmonary
- Thrombosis, coronary

Cardiac Arrest Algorithm

Immediate Post-Cardiac Arrest Care Algorithm

- Thrombosis, coronary

Bradycardia With a Pulse Algorithm

Assess appropriateness for clinical condition. Heart rate typically <50/min if bradyarrhythmia.

Identify and treat underlying cause

- Maintain patent airway; assist breathing as necessary
- Oxygen (if hypoxemic)
- Cardiac monitor to identify rhythm; monitor blood pressure and oximetry
- IV access

No

Monitor

and

observe

• 12-Lead ECG if available; don't delay therapy

Persistent bradyarrhythmia causing:

- Hypotension?
- Acutely altered mental status?
- Signs of shock?
- Ischemic chest discomfort?
- Acute heart failure?

Yes

Atropine

Consider:

Expert consultation

Transvenous pacing

Atropine IV Dose: First dose: 0.5 mg bolus Repeat every 3-5 minutes Maximum: 3 mg

Dopamine IV Infusion: 2-10 mcg/kg per minute

Epinephrine IV Infusion: 2-10 mcg per minute

Tachycardia With a Pulse Algorithm

Assess appropriateness for clinical condition. Heart rate typically ≥150/min if tachyarrhythmia.

1 mg/min for first 6 hours. **Sotalol IV Dose:** 100 mg (1.5 mg/kg) over 5 minutes. Avoid if

prolonged QT.